Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
ACS Omega ; 9(14): 15904-15914, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617699

ABSTRACT

Montmorillonite clay and agar are naturally occurring materials of significant importance in designing biocompatible materials tailored for applications in biotechnology and medicine. The introduction of magnetic properties has the potential to significantly boost their characteristics and expand their applications. In this study, we have successfully synthesized highly intercalated magnetic composites, incorporating magnetic iron oxide nanoparticles (MNPs), montmorillonite clay (MMT), and agar (AG), through a thermo-physicomechanical method. Three samples of MMT-AG with 2, 1.5, and 0.5% MNPs and three sample composites of MNPs-AG with 2, 1, and 0.5% MMT clay are prepared. The synthesized composites were characterized by SEM, XRD, TGA, DTA, and FTIR. SEM analysis revealed a uniform dispersion of MNPs and MMT in the composite. The XRD pattern confirmed the presence of MNPs in the composite site. The TGA and DTA results demonstrated improved thermal stability due to the MNP incorporation. FTIR spectra showed all of the constituents of agar, MNPs, and MMT clay. The swelling ratio was observed to range from 835% to 1739%. The swelling study indicated an increased hydrophobicity with the addition of MNPs to the composite. Antibacterial activities revealed a significant inhibition of Escherichia coli (E. coli) growth by ranging from 10 to 19 nm in the composite. The composite also exhibited a considerable antioxidant action, with IC50 values of 7.96, 46.55, and 57.58 µg/mL, and electrical properties just like conductors.

2.
Biomacromolecules ; 25(4): 2136-2155, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38448083

ABSTRACT

Cellulose, the most abundant polymer on Earth, has been widely utilized in its nanoform due to its excellent properties, finding applications across various scientific fields. As the demand for nanocellulose continues to rise and its ease of use becomes apparent, there has been a significant increase in research publications centered on this biomaterial. Nanocellulose, in its different forms, has shown tremendous promise as a tissue engineered scaffold for regeneration and repair. Particularly, nanocellulose-based composites and scaffolds have emerged as highly demanding materials for both soft and hard tissue engineering. Medical practitioners have traditionally relied on collagen and its analogue, gelatin, for treating tissue damage. However, the limited mechanical strength of these biopolymers restricts their direct use in various applications. This issue can be overcome by making hybrids of these biopolymers with nanocellulose. This review presents a comprehensive analysis of the recent and most relevant publications focusing on hybrid composites of collagen and gelatin with a specific emphasis on their combination with nanocellulose. While bone and skin tissue engineering represents two areas where a majority of researchers are concentrating their efforts, this review highlights the use of nanocellulose-based hybrids in these contexts.


Subject(s)
Gelatin , Tissue Engineering , Tissue Scaffolds , Biocompatible Materials , Collagen
3.
Sci Total Environ ; 918: 170498, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38307266

ABSTRACT

Industrialization and population growth are leading to the production of significant amounts of sewage containing hazardous xenobiotic compounds. These compounds pose a threat to human and animal health, as well as the overall ecosystem. To combat this issue, chemical, physical, and biological techniques have been used to remove these contaminants from water bodies affected by human activity. Biotechnological methods have proven effective in utilizing microorganisms and enzymes, particularly laccases, to address this problem. Laccases possess versatile enzymatic characteristics and have shown promise in degrading different xenobiotic compounds found in municipal, industrial, and medical wastewater. Both free enzymes and crude enzyme extracts have demonstrated success in the biotransformation of these compounds. Despite these advancements, the widespread use of laccases for bioremediation and wastewater treatment faces challenges due to the complex composition, high salt concentration, and extreme pH often present in contaminated media. These factors negatively impact protein stability, recovery, and recycling processes, hindering their large-scale application. These issues can be addressed by focusing on large-scale production, resolving operation problems, and utilizing cutting-edge genetic and protein engineering techniques. Additionally, finding novel sources of laccases, understanding their biochemical properties, enhancing their catalytic activity and thermostability, and improving their production processes are crucial steps towards overcoming these limitations. By doing so, enzyme-based biological degradation processes can be improved, resulting in more efficient removal of xenobiotics from water systems. This review summarizes the latest research on bacterial laccases over the past decade. It covers the advancements in identifying their structures, characterizing their biochemical properties, exploring their modes of action, and discovering their potential applications in the biotransformation and bioremediation of xenobiotic pollutants commonly present in water sources.


Subject(s)
Laccase , Water , Animals , Humans , Laccase/metabolism , Ecosystem , Xenobiotics , Biotransformation , Biodegradation, Environmental
4.
Int J Biol Macromol ; 260(Pt 2): 129595, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253138

ABSTRACT

Lignin and Casparian strips are two essential components of plant cells that play critical roles in plant development regulate nutrients and water across the plants cell. Recent studies have extensively investigated lignin diversity and Casparian strip formation, providing valuable insights into plant physiology. This review presents the established lignin biosynthesis pathway, as well as the developmental patterns of lignin and Casparian strip and transcriptional network associated with Casparian strip formation. It describes the biochemical and genetic mechanisms that regulate lignin biosynthesis and deposition in different plants cell types and tissues. Additionally, the review highlights recent studies that have uncovered novel lignin biosynthesis genes and enzymatic pathways, expanding our understanding of lignin diversity. This review also discusses the developmental patterns of Casparian strip in roots and their role in regulating nutrient and water transport, focusing on recent genetic and molecular studies that have identified regulators of Casparian strip formation. Previous research has shown that lignin biosynthesis genes also play a role in Casparian strip formation, suggesting that these processes are interconnected. In conclusion, this comprehensive overview provides insights into the developmental patterns of lignin diversity and Casparian strip as apoplastic barriers. It also identifies future research directions, including the functional characterization of novel lignin biosynthesis genes and the identification of additional regulators of Casparian strip formation. Overall, this review enhances our understanding of the complex and interconnected processes that drive plant growth, pathogen defense, regulation and development.


Subject(s)
Cell Wall , Lignin , Lignin/metabolism , Cell Wall/metabolism , Plant Physiological Phenomena , Plant Roots/metabolism , Water/metabolism
5.
J Hazard Mater ; 465: 133435, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38224639

ABSTRACT

Nylon-6,6 microplastics (NMPs) in aquatic systems have emerged as potential contaminants to the global environment and have garnered immense consideration over the years. Unfortunately, there is currently no efficient method available to eliminate NMPs from sewage. This study aims to address this issue by isolating Brucella intermedia ZL-06, a bacterium capable of producing a bacterial polysaccharide-based flocculant (PBF). The PBF generated from this bacterium shows promising efficacy in effectively flocculating NMPs. Subsequently, the precipitated flocs (NMPs + PBF) were utilized as sustainable feedstock for synthesizing PBF. The study yielded 6.91 g/L PBF under optimum conditions. Genome sequencing analysis was conducted to study the mechanisms of PBF synthesis and nylon-6,6 degradation. The PBF exhibited impressive flocculating capacity of 90.1 mg/g of PBF when applied to 0.01 mm NMPs, aided by the presence of Ca2+. FTIR and XPS analysis showed the presence of hydroxyl, carboxyl, and amine groups in PBF. The flocculation performance of PBF conformed to Langmuir isotherm and pseudo-first-order adsorption kinetics model. These findings present a promising approach for reducing the production costs of PBF by utilizing NMPs as sustainable nutrient sources.


Subject(s)
Brucella , Caprolactam/analogs & derivatives , Microplastics , Polymers , Plastics , Sewage/microbiology , Flocculation
6.
Article in English | MEDLINE | ID: mdl-38174626

ABSTRACT

Weed communities influence the dynamics of ecosystems, particularly in disturbed environments where anthropogenic activities often result in higher pollution. Understanding the dynamics existing between native weed communities and invasive species in disturbed environments is crucial for effective management and normal ecosystem functioning. Recognising the potential resistance of native weed communities to invasion in disturbed environments can help identify suitable native plants for restoration operations. This review aims to investigate the adaptations exhibited by native and non-native weeds that may affect invasions within disturbed environments. Factors such as ecological characteristics, altered soil conditions, and adaptations of native weed communities that potentially confer a competitive advantage relative to non-native or invasive weeds in disturbed environments are analysed. Moreover, the roles of biotic interactions such as competition, mutualistic relationships, and allelopathy in shaping the invasion resistance of native weed communities are described. Emphasis is given to the consideration of the resistance of native weeds as a key factor in invasion dynamics that provides insights for conservation and restoration efforts in disturbed environments. Additionally, this review underscores the need for further research to unravel the underlying mechanisms and to devise targeted management strategies. These strategies aim to promote the resistance of native weed communities and mitigate the negative effects of invasive weed species in disturbed environments. By delving deeper into these insights, we can gain an understanding of the ecological dynamics within disturbed ecosystems and develop valuable insights for the management of invasive species, and to restore long-term ecosystem sustainability.

7.
Appl Microbiol Biotechnol ; 108(1): 33, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38175234

ABSTRACT

Due to the limited resources and environmental problems associated with fossil fuels, there is a growing interest in utilizing renewable resources for the production of biofuels through microbial fermentation. Isobutanol is a promising biofuel that could potentially replace gasoline. However, its production efficiency is currently limited by the use of naturally isolated microorganisms. These naturally isolated microorganisms often encounter problems such as a limited range of substrates, low tolerance to solvents or inhibitors, feedback inhibition, and an imbalanced redox state. This makes it difficult to improve their production efficiency through traditional process optimization methods. Fortunately, recent advancements in genetic engineering technologies have made it possible to enhance microbial hosts for the increased production of isobutanol from renewable resources. This review provides a summary of the strategies and synthetic biology approaches that have been employed in the past few years to improve naturally isolated or non-natural microbial hosts for the enhanced production of isobutanol by utilizing different renewable resources. Furthermore, it also discusses the challenges that are faced by engineered microbial hosts and presents future perspectives to enhancing isobutanol production. KEY POINTS: • Promising potential of isobutanol to replace gasoline • Engineering of native and non-native microbial host for isobutanol production • Challenges and opportunities for enhanced isobutanol production.


Subject(s)
Biofuels , Gasoline , Butanols , Cloning, Molecular
8.
Appl Microbiol Biotechnol ; 108(1): 25, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38157005

ABSTRACT

Hexabromocyclododecane (HBCD) is a widely used brominated flame retardant; however, it is a persistent organic pollutant as well as affects the human thyroid hormones and causes cancer. However, the degradation of HBCD has received little attention from researchers. Due to its bioaccumulative and hazardous properties, an appropriate strategy for its remediation is required. In this study, we investigated the biodegradation of HBCD using Shewanella oneidensis MR-1 under optimized conditions. The Box-Behnken design (BBD) was implemented for the optimization of the physical degradation parameters of HBCD. S. oneidensis MR-1 showed the best degradation performance at a temperature of 30 °C, pH 7, and agitation speed of 115 rpm, with an HBCD concentration of 1125 µg/L in mineral salt medium (MSM). The strain tolerated up to 2000 µg/L HBCD. Gas chromatography-mass spectrometry analysis identified three intermediates, including 2-bromo dodecane, 2,7,10-trimethyldodecane, and 4-methyl-1-decene. The results provide an insightful understanding of the biodegradation of HBCD by S. oneidensis MR-1 under optimized conditions and could pave the way for further eco-friendly applications. KEY POINTS: • HBCD biodegradation by Shewanella oneidensis • Optimization of HBCD biodegradation by the Box-Behnken analysis • Identification of useful metabolites from HBCD degradation.


Subject(s)
Flame Retardants , Hydrocarbons, Brominated , Shewanella , Humans , Biodegradation, Environmental , Hydrocarbons, Brominated/chemistry , Hydrocarbons, Brominated/metabolism , Shewanella/metabolism , Flame Retardants/metabolism
9.
Toxics ; 11(10)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37888715

ABSTRACT

Benzene, a potent carcinogen, is known to cause acute myeloid leukaemia. While chemotherapy is commonly used for cancer treatment, its side effects have prompted scientists to explore natural products that can mitigate the haematotoxic effects induced by chemicals. One area of interest is nano-theragnostics, which aims to enhance the therapeutic potential of natural products. This study aimed to enhance the effects of methanolic extracts from Ocimum basilicum, Rosemarinus officinalis, and Thymus vulgaris by loading them onto silica nanobeads (SNBs) for targeted delivery to mitigate the benzene-induced haematotoxic effects. The SNBs, 48 nm in diameter, were prepared using a chemical method and were then loaded with the plant extracts. The plant-extract-loaded SNBs were then coated with carboxymethyl cellulose (CMC). The modified SNBs were characterized using various techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-visible spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The developed plant-extract-loaded and CMC-modified SNBs were administered intravenously to benzene-exposed rats, and haematological and histopathological profiling was conducted. Rats exposed to benzene showed increased liver and spleen weight, which was mitigated by the plant-extract-loaded SNBs. The differential white blood cell (WBC) count was higher in rats with benzene-induced haematotoxicity, but this count decreased significantly in rats treated with plant-extract-loaded SNBs. Additionally, blast cells observed in benzene-exposed rats were not found in rats treated with plant-extract-loaded SNBs. The SNBs facilitated targeted drug delivery of the three selected medicinal herbs at low doses. These results suggest that SNBs have promising potential as targeted drug delivery agents to mitigate haematotoxic effects induced by benzene in rats.

11.
Adv Healthc Mater ; 12(17): e2202787, 2023 07.
Article in English | MEDLINE | ID: mdl-36905401

ABSTRACT

Transcatheter arterial embolization, a minimally invasive treatment to deliberately occlude the blood vessels, has become a safe and effective procedure for the management of vascular diseases and benign/malignant tumors. Particularly, hydrogel-based embolic agents have garnered much attention because of their potential to address some of the limitations of clinically used embolic agents and can be rationally designed to impart more favorable characteristics or functions. In this review, the recent progress toward the development of polymer-based hydrogels for effective endovascular embolization, including the in situ gelling hydrogels mediated by physically or chemically crosslinking, imageable hydrogels for intraprocedural and postprocedural feedback, use of hydrogels as the drug depot for local delivery of therapeutic drugs, hemostatic hydrogels inducing extrinsic or intrinsic coagulation of blood, stimuli-responsive shape memory hydrogels as the smart embolization devices, and hydrogels incorporating external-stimuli functional materials for multidisciplinary therapy, is systemically summarized. Moreover, the potential considerations of hydrogel-based embolic agents confronted in therapeutic embolization are pointed out. Finally, the perspectives for the development of more effective embolic hydrogels are also highlighted.


Subject(s)
Embolization, Therapeutic , Hydrogels , Polymers , Blood Coagulation , Embolization, Therapeutic/methods , Hemostasis
12.
Biotechnol Adv ; 64: 108116, 2023.
Article in English | MEDLINE | ID: mdl-36773707

ABSTRACT

Bacteriophages are the most abundant biological entity in the world and hold a tremendous amount of unexplored genetic information. Since their discovery, phages have drawn a great deal of attention from researchers despite their small size. The development of advanced strategies to modify their genomes and produce engineered phages with desired traits has opened new avenues for their applications. This review presents advanced strategies for developing engineered phages and their potential antibacterial applications in phage therapy, disruption of biofilm, delivery of antimicrobials, use of endolysin as an antibacterial agent, and altering the phage host range. Similarly, engineered phages find applications in eukaryotes as a shuttle for delivering genes and drugs to the targeted cells, and are used in the development of vaccines and facilitating tissue engineering. The use of phage display-based specific peptides for vaccine development, diagnostic tools, and targeted drug delivery is also discussed in this review. The engineered phage-mediated industrial food processing and biocontrol, advanced wastewater treatment, phage-based nano-medicines, and their use as a bio-recognition element for the detection of bacterial pathogens are also part of this review. The genetic engineering approaches hold great potential to accelerate translational phages and research. Overall, this review provides a deep understanding of the ingenious knowledge of phage engineering to move them beyond their innate ability for potential applications.


Subject(s)
Bacteriophages , Bacteriophages/genetics , Genetic Engineering , Bacteria/genetics , Anti-Bacterial Agents , Drug Delivery Systems
13.
Carbohydr Polym ; 308: 120669, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36813347

ABSTRACT

The anisotropic features play indispensable roles in regulating various life activities in different organisms. Increasing efforts have been made to learn and mimic various tissues' intrinsic anisotropic structure or functionality for broad applications in different areas, especially in biomedicine and pharmacy. This paper discusses the strategies for fabricating biomaterials using biopolymers for biomedical applications with the case study analysis. Biopolymers, including different polysaccharides, proteins, and their derivates, that have been confirmed with sound biocompatibility for different biomedical applications are summarized, with a special focus on nanocellulose. Advanced analytical techniques for understanding and characterizing the biopolymer-based anisotropic structures for various biomedical applications are also summarized. Challenges still exist in precisely constructing biopolymers-based biomaterials with anisotropic structures from molecular to macroscopic levels and fitting the dynamic processes in native tissue. It is foreseeable that with the advancement of biopolymers' molecular functionalization, biopolymer building block orientation manipulation strategies, and structural characterization techniques, developing anisotropic biopolymer-based biomaterials for different biomedical applications would significantly contribute to a friendly disease-curing and healthcare experience.


Subject(s)
Biocompatible Materials , Polysaccharides , Biopolymers/chemistry , Polysaccharides/chemistry , Biocompatible Materials/chemistry , Proteins/chemistry
14.
Int J Biol Macromol ; 231: 123269, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36649873

ABSTRACT

This study was aimed to develop low-cost bacterial cellulose (BC)-based antibacterial composite with pomegranate (Punica granatum L.) peel extract (PGPE) for potential biomedical applications. BC was cost-effectively produced by utilizing food wastes, and PGPE was ex situ impregnated into its hydrogel. Field-emission scanning electron microscopic (FE-SEM) observation showed a nanofibrous and microporous morphology of pristine BC and confirmed the development of BC-PGPE composite. Fourier transform infrared (FTIR) spectroscopy indicated the chemical interaction of PGPE with BC nanofibers. BC-PGPE composite held 97 % water of its dry weight and retained it for more than 48 h. The BC-PGPE composite exhibited better reswelling capabilities than pristine BC after three consecutive re-wetting cycles. The antibacterial activity of the BC-PGPE composite was determined via minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), disc diffusion, and plate count methods. The PGPE extract showed good antimicrobial activity against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative), both in the form of extract and composite with BC, with relatively better activity against the former. The BC-PGPE composite produced a 17 mm zone of inhibition against S. aureus, while no inhibition zone was formed against E. coli. Furthermore, BC-PGPE composite caused a 100 % and 50 % reduction in the growth of S. aureus and E. coli, respectively. The findings of this study indicate that BC-PGPE composite could be a promising antibacterial wound dressing material.


Subject(s)
Pomegranate , Cellulose/chemistry , Staphylococcus aureus , Escherichia coli , Anti-Bacterial Agents/pharmacology , Microscopy, Electron, Scanning , Microbial Sensitivity Tests
15.
Carbohydr Polym ; 300: 120301, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36372499

ABSTRACT

A major challenge to large-scale production and utilization of bacterial cellulose (BC) for various applications is its low yield and productivity by bacterial cells and the high cost of feedstock. A supplementation of the classical expensive Hestrin and Schramm (HS) medium with 1 % polyethylene terephthalate ammonia hydrolysate (PETAH) resulted in 215 % high yield. Although the physicochemical properties of BC were not significantly influenced, the BC produced in 1 % PETAH-supplemented HS medium showed a higher surface area, which showed 1.39 times higher adsorption capacity for tetracycline than BC produced in HS medium. The 1 % PETAH-supplemented HS medium respectively enhanced the activity of α-UDP-glucose pyrophosphorylase and α-phosphoglucomutase by 30.63 % and 135.24 % and decreased the activity of pyruvate kinase and phosphofructokinase by 40.34 % and 52.63 %. The results of this study provide insights into the activation mechanism of Taonella mepensis by PETAH supplementation for high yield and productivity of BC.


Subject(s)
Gluconacetobacter xylinus , Cellulose/chemistry , Polyethylene Terephthalates , Culture Media/chemistry
16.
Sci Total Environ ; 858(Pt 2): 159937, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36343829

ABSTRACT

Deterioration in the environmental ecosystems through the depletion of nonrenewable resources and the burden of deleterious contaminants is considered a global concern. To this end, great interest has been shown in the use of renewable and environmentally-friendly reactive materials dually to promote environmental sustainability and cope with harmful contaminants. Among the different available options, the use of nanocellulose (NC) as an environmentally benign and renewable natural nanomaterial is an attractive candidate for environmental remediation owing to its miraculous physicochemical characteristics. This review discusses the intrinsic properties and the structural aspects of different types of NC, including cellulose nanofibrils (CNFs), cellulose nanocrystals (CNCs), and bacterial cellulose (BC) or bacterial nanocellulose (BNC). Also, the different modification strategies involving the functionalization or hybridization of NC by using different functional and reactive materials aimed at wastewater remediation have been elaborated. The modified or hybridized NC has been explored for its applications in the removal or degradation of aquatic contaminants through adsorption, filtration, coagulation, catalysis, photocatalysis, and pollutant sensing. This review highlights the role of NC in the modified composites and describes the underlying mechanisms involved in the removal of contaminants. The life-cycle assessment (LCA) of NC is discussed to unveil the hidden risks associated with its production to the final disposal. Moreover, the contribution of NC in the promotion of waste management at different stages has been described in the form of the five-Rs strategy. In summary, this review provides rational insights to develop NC-based environmentally-friendly reactive materials for the removal and degradation of hazardous aquatic contaminants.


Subject(s)
Environmental Restoration and Remediation , Nanostructures , Water Purification , Ecosystem , Cellulose/chemistry , Nanostructures/chemistry
17.
Polymers (Basel) ; 14(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36365662

ABSTRACT

Bacterial cellulose (BC) is currently one of the most popular environmentally friendly materials with unique structural and physicochemical properties for obtaining various functional materials for a wide range of applications. In this regard, the literature reporting on bacterial nanocellulose has increased exponentially in the past decade. Currently, extensive investigations aim at promoting the manufacturing of BC-based nanocomposites with other components such as nanoparticles, polymers, and biomolecules, and that will enable to develop of a wide range of materials with advanced and novel functionalities. However, the commercial production of such materials is limited by the high cost and low yield of BC, and the lack of highly efficient industrial production technologies as well. Therefore, the present review aimed at studying the current literature data in the field of highly efficient BC production for the purpose of its further usage to obtain polymer nanocomposites. The review highlights the progress in synthesizing BC-based nanocomposites and their applications in biomedical fields, such as wound healing, drug delivery, tissue engineering. Bacterial nanocellulose-based biosensors and adsorbents were introduced herein.

18.
Biomimetics (Basel) ; 7(4)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36278709

ABSTRACT

Probiotics are delivered orally for treating gastrointestinal tract (GIT) infections; thus, they should be protected from the harsh environment of the GIT, such as through microencapsulation. Here, we microencapsulated cells of the probiotic Lacticaseibacillus rhamnosus GG via the liquid-droplet-forming method and evaluated them for oral delivery of bovine lactoferrin (bLf). Briefly, sodium alginate capsules (G-capsules) were first prepared, crosslinked with calcium chloride (C-capsules), and then modified with disodium hydrogen phosphate (M-capsules). All capsules showed good swelling behavior in the order of G-capsules > C-capsules > M-capsules in simulated gastric fluid (SGF, pH 2) and simulated intestinal fluid (SIF, pH 7.2). FE-SEM observations showed the formation of porous surfaces and successful microencapsulation of L. rhamnosus GG cells. The microencapsulated probiotics showed 85% and 77% viability in SGF and SIF, respectively, after 300 min. Compared to the 65% and 70% viability of gelation-encapsulated and crosslinking-encapsulated L. rhamnosus GG cells, respectively, the mineralization-encapsulated cells showed up to 85% viability after 300 min in SIF. The entrapment of bLf in the mineralization-encapsulated L. rhamnosus GG cells did not show any toxicity to the cells. FTIR spectroscopy confirmed the successful surface modification of L. rhamnosus GG cells via gelation, crosslinking, and mineralization, along with the entrapment of bLf on the surface of microencapsulated cells. The findings of these studies show that the microencapsulated L. rhamnosus GG cells with natural polyelectrolytes could be used as stable carriers for the oral and sustainable delivery of beneficial biotherapeutics without compromising their viability and the activity of probiotics.

19.
Bioengineering (Basel) ; 9(9)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36134971

ABSTRACT

In this study, the effects of epiphytic microbiota from different forages on the fermentation characteristics and microbial community structure of forage sorghum silage were investigated. The gamma irradiated sterilized forage sorghum was treated through sterile water, epiphytic microbiota of forage sorghum (FSm), Sudan grass (SDm), Napier grass (NPm), and maize (MZm). NPm and SDm inoculated silages showed similar pH value and lactic acid (LA) and acetic acid (AA) contents at day 3 and 60 of ensiling. The final silage of FSm and MZm showed lower (p < 0.05) pH and AA content and a higher LA content compared to the NPm and SDm silages. Bacterial species from the Weisella genus were predominantly present in FSm, NPm, and SDm, while Lactococcus dominated the MZm silage during early ensiling. Lactobacillus was predominant in all inoculated terminal silages. Overall, the four inoculated microbiota decreased the pH value of silage and were dominated by lactic acid bacteria (LAB); however, the NPm and SDm treatments resulted in comparatively higher AA contents which could have an inhibitory effect on the secondary fermentation developed by the yeast and enhanced the aerobic stability of forage sorghum silage.

20.
Gels ; 8(9)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36135264

ABSTRACT

Bacterial cellulose (BC), also termed bio-cellulose, has been recognized as a biomaterial of vital importance, thanks to its impressive structural features, diverse synthesis routes, high thermomechanical properties, and its ability to combine with multiple additives to form composites for a wide range of applications in diversified areas. Its purity, nontoxicity, and better physico-mechanical features than plant cellulose (PC) make it a better choice for biological applications. However, a major issue with the use of BC instead of PC for various applications is its high production costs, mainly caused by the use of expensive components in the chemically defined media, such as Hestrin-Schramm (HS) medium. Furthermore, the low yield of BC-producing bacteria indirectly accounts for the high cost of BC-based products. Over the last couple of decades, extensive efforts have been devoted to the exploration of low-cost carbon sources for BC production, besides identifying efficient bacterial strains as well as developing engineered strains, developing advanced reactors, and optimizing the culturing conditions for the high yield and productivity of BC, with the aim to minimize its production cost. Considering the applications, BC has attracted attention in highly diversified areas, such as medical, pharmaceutics, textile, cosmetics, food, environmental, and industrial sectors. This review is focused on overviewing the cost-effective synthesis routes for BC production, along with its noteworthy applications in the food and environmental sectors. We have made a comprehensive review of recent papers regarding the cost-effective production and applications of BC in the food and environmental sectors. This review provides the basic knowledge and understanding for cost-effective and scaleup of BC production by discussing the techno-economic analysis of BC production, BC market, and commercialization of BC products. It explores BC applications as food additives as its functionalization to minimize different environmental hazards, such as air contaminants and water pollutants.

SELECTION OF CITATIONS
SEARCH DETAIL
...